FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Serratezomines D and E, new Lycopodium alkaloids from Lycopodium serratum var. serratum

Takaaki Kubota ^a, Hiroko Yahata ^a, Sunao Yamamoto ^a, Shigeki Hayashi ^b, Toshiro Shibata ^b, Iun'ichi Kobayashi ^a,*

ARTICLE INFO

Article history: Received 28 February 2009 Revised 27 April 2009 Accepted 28 April 2009 Available online 5 May 2009

Keywords: Lycopodium alkaloids Serratezomines D and E Acetylcholinesterase

ABSTRACT

Two new *Lycopodium* alkaloids, serratezomines D (1) and E (2), were isolated from the club moss *Lycopodium serratum* var. *serratum*. Serratezomine D (1) is a new lucidine-type alkaloid, while serratezomine E (2) is a new phlegmarane-type alkaloid. The structures and relative stereochemistry of 1 and 2 were elucidated on the basis of spectroscopic data. Serratezomine D (1) exhibited an inhibitory activity against acetylcholinesterase.

© 2009 Elsevier Ltd. All rights reserved.

Club moss (Lycopodiaceae) are known to be a rich source of *Lycopodium* alkaloids possessing unique heterocyclic ring systems such as $C_{16}N_1$, $C_{16}N_2$, and $C_{27}N_3$,which have attracted great interest from biogenetic, synthetic, and biological points of view. In our continuing efforts to find new *Lycopodium* alkaloids, we previously isolated a novel seco-serratinine type *Lycopodium* alkaloid, serratezomines B and C, from the club moss *Lycopodium* alkaloids, serratezomines B and C, from the club moss *Lycopodium* serratum var. serratum. Further investigation of another collection of this plant resulted in the isolation of a new lucidine-type alkaloid, serratezomine D (1), and a new phlegmarane-type alkaloid, serratezomine E (2). In this article, we describe the isolation and structure elucidation of 1 and 2.

The club moss *Lycopodium serratum* var. *serratum* (2.6 kg) collected in Nayoro, Hokkaido, were extracted with MeOH, and the MeOH extract was partitioned between EtOAc and 3% tartaric acid. The aqueous phase was adjusted to pH 10 with saturated Na₂CO₃ and partitioned with CHCl₃. A part of the CHCl₃-soluble materials were purified by an amino silica gel column chromatography (*n*-hexane/EtOAc, CHCl₃/MeOH, and then MeOH/NH₃aq), in which a fraction eluted with CHCl₃/MeOH (100:1) was purified by silica gel column chromatographies (CHCl₃/MeOH), followed by preparative TLC (CHCl₃/MeOH/H₂O) to afford serratezomines D (1, 0.00003% yield) and E (2, 0.000005% yield) together with known *Lycopodium* alkaloids serratezomines A-C,³ lucidines A and B,^{4,5}

Serratezomine D (1)¹⁰ showed the pseudomolecular ion peak at m/z 456 (M+H)⁺ in the ESIMS, and the molecular formula, $C_{29}H_{49}N_3O$, was established by HRESIMS [m/z 456.3953, (M+H)⁺, Δ -0.1 mmu]. IR absorptions implied the presence of hydroxy and/or amino (3372 cm⁻¹) and amide carbonyl (1685 cm⁻¹) functionalities. Inspection of the ¹H and ¹³C NMR spectra and the HMQC spectrum revealed that 1 consisted of one amide carbonyl, twelve sp³ methines, thirteen sp³ methylenes, and three methyls (Table 1). Among them, four sp³ methines (δ_C 65.1, 62.5, 49.5, and 47.9), two sp³ methylenes (δ_C 57.1 and 41.7), and one methyl (δ_C 43.1) were attributed to those bearing a nitrogen atom.

^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

b Hokkaido Division, Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, 108-4 Ohashi, Nayoro, Hokkaido 096-0065, Japan

oxolucidines A and B,^{5,6} serratinine,⁷ lycovatine A,⁸ and lobscurinol.⁹

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: 81 11 706 4989. E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi)

Table 1 ¹H and ¹³C NMR data of serratezomine D (1) in CDCl₃^a

Position	$\delta_{ m H}$	δ_{C}		Position	δ_{H}	δ_{C}	
2a	4.63 (1H, d, 12.6 Hz)	41.7	t	2'a	2.96 (1H, m)	57.1	t
2b	2.37 (1H, m)			2′b	2.26 (1H, m)		
3a	1.71 (1H, m)	25.4	t	3′	2.33 (1H, m)	43.1	d
3b	1.43 (1H, m)			4'a	2.82 (1H, d, 10.8 Hz)	28.1	t
4a	2.19 (1H, m)	29.7	t	4′b	1.61 (1H, m)		
4b	1.02 (1H, m)			5′	1.75 (1H, m)	25.4	d
5	0.89 (1H, m)	47.1	d	6′	2.56 (1H, brs)	65.1	d
6	2.87 (1H, ddd, 11.1, 11.1, 3.0 Hz)	62.5	d	7'a	2.06 (1H, m)	37.6	t
7a	2.06 (1H, m)	37.1	t	7′b	1.15 (1H, m)		
7b	1.31 (1H, m)			8′	1.54 (1H, m)	27.8	d
8	1.50 (1H, m)	31.3	d	9'a	1.93 (1H, br d, 18.6 Hz)	39.7	t
9a	1.78 (1H, m)	40.8	t	9′b	1.71 (1H, m)		
9b	0.65 (1H, ddd, 12.0, 12.0, 12.0 Hz)			10'	0.91 (1H, m)	22.2	d
10	1.10 (1H, m)	37.6	d	11'	1.65 (2H, m)	30.5	t
11a	1.97 (1H, m)	35.5	t	12′	0.97 (3H, d, 6.6 Hz)	22.0	q
11b	0.84 (1H, m)			13′	2.33 (3H, s)	43.1	q
12	1.01 (1H, d, 6.6 Hz)	22.6	q				
13	3.07 (1H, br s)	47.9	d				
14a	1.71 (1H, m)	30.8	t				
14b	1.32 (1H, m)						
15	1.58 (2H, m)	19.8	t				
16	2.17 (1H, m)	38.2	d				
17	2.96 (1H, m)	49.5	d				
19	8.18 (1H, s)	158.6	S				

 $^{^{\}rm a}$ $^{\rm 1}$ H and $^{\rm 13}$ C NMR spectra were recorded at 600 MHz and 150 MHz, respectively.

The gross structure of **1** was elucidated from 2D NMR data as shown in Figure 1. Connections of C-2–C-17, C-5 to C-10, C-8 to C-12, C-2′–C-11′, C-8′ to C-12′, C-3′ to C-16, and C-11′ to C-17, which were revealed from analyses of the $^1\mathrm{H}$ – $^1\mathrm{H}$ COSY, TOCSY, and HMQC-TOCSY spectra of **1**, suggested that **1** possessed a lucidine-type C₂₇N₃,skeleton. HMBC correlations for a formyl proton (δ_{H} 8.18) to C-2 (δ_{C} 41.7), H-2 to C-6 (δ_{C} 62.5), and H—2 and H—6 to an amide carbonyl carbon (δ_{C} 158.6) indicated that C-2 and C-6 were connected through N-1, and a formyl group was attached to N-1. Connections among C-2′, C-6′, and C-13′ via N-1′ were indicated by HMBC cross-peaks of H-13′/C-2′ and H-13′/C-6′. Considering the molecular formula of **1** and $^1\mathrm{H}$ and $^{13}\mathrm{C}$ chemical shifts for two methines at C-13 and C-17, a connection of C-13 and C-17 through N-18 was elucidated. Thus, the gross structure of serratezomine D was assigned as **1**.

The relative stereochemistry of 1 was deduced from NOESY correlations as shown in Figure 2. Inspection of the phase-sensitive NOESY spectrum of 1 revealed that conformations of a piperidine ring (N-1 and C-2-C-6) and a cyclohexane ring (C-5-C-10) of a trans decahydroquinoline ring (N-1 and C-2-C-10) were both chair form. The conformations of a piperidine ring (C-13-C-17 and N-18) and a cyclohexane ring (C-5'-C-10') were assigned as both chair form, while the conformation of a piperidine ring (N-1' and C-2'-C-6') of a trans decahydroquinoline ring (N-1' and C-2'-C-10') was elucidated to be half-chair form. NOESY correlations among H-6, H-8, and H-10 implied that a methyl group at C-8 was in an equatorial position and H-10 was in an axial position. NOESY cross-peaks of H-10/H-13, H-11a/H-17, H-16/H-4'a, H-17/H-9'a, and H-3'/H-4'a implied that H-13 and H-3' were in equatorial positions and H-16 and H-17 were in axial positions. Axial positions of H-5', H-6', H-8', and H-10', and an equatorial position of a methyl group at C-8' with respect to the cyclohexane ring (C-5'-C-10') were suggested from NOESY correlations between H-4'b and H-6', H-6' and H-8', and H-8' and H-10'. Relative stereochemistry between unit a (N-1, C-2-C-10, C-12, and C-19) and unit b (C-13-C-17, N-18, N-1', and C-2'-C-12') via C-11 was deduced from NOESY correlations between H-4a and H-11a, H-10 and H-13, and H-11a and H-17 as shown in Figure 2. Thus, the relative stereochemistry of serratezomine D was elucidated to be 1.

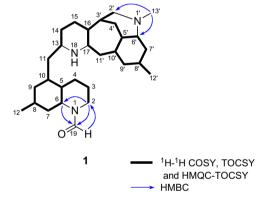
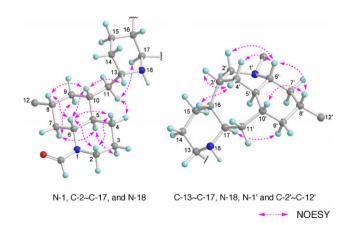



Figure 1. Selected 2D NMR correlations for serratezomine D (1).

Serratezomine E ($\mathbf{2}$)¹¹ showed the pseudomolecular ion peak at m/z 293 (M+H)⁺ in the ESIMS, and the molecular formula, $C_{18}H_{32}N_2O$, was established by HRESIMS [m/z 293.2585, (M+H)⁺, Δ -0.8 mmul. The IR spectrum suggested the presence of hydroxy

Figure 2. Selected NOESY correlations and relative stereochemistry for serratezomine D (1). (Hydrogen atoms of methyl groups were omitted).

and/or amino (3385 cm⁻¹) and amide carbonyl (1688 cm⁻¹) functionalities. Many pairs of signals were observed in the ¹H and ¹³C NMR spectra of **2** with a ratio of approximately 5:4, suggesting that **2** existed as a mixture of two rotamers due to the rotation of its *N*-acetyl group (Table 2). However, structural elucidation of **2** was carried out using the mixture of the rotation isomers.

Analyses of the $^1H^{-1}H$ COSY and TOCSY spectra of $\bf 2$ disclosed connections for C-2–C-17, C-5 to C-10, and C-8 to C-12, indicating that $\bf 2$ had a phlegmarane-type $C_{16}N_2$ skeleton (Fig. 3). The HMBC correlation for H_3 -20 to C-19 and NOESY correlations between H_3 -20 and H-2 (rotamer $\bf a$), and H_3 -20 and H-6 (rotamer $\bf b$) implied that C-2 and C-6 were connected through N-1 and an acetyl group was attached to N-1. Considering 1H and ^{13}C chemical shifts for a methine at C-13 and a methylene at C-17 and the molecular formula of $\bf 2$, the connection of C-13 and C-17 through N-18 was elucidated. Thus, the gross structure of serratezomine E was assigned as $\bf 2$.

The relative stereochemistry of **2** was deduced from correlations observed in the phase-sensitive NOESY spectrum of **2** as depicted in Figure 4. The chair forms of a piperidine ring (N-1 and C-2-C-6) and a cyclohexane ring (C-5-C-10) of a *cis* decahydroquinoline ring (N-1 and C-2-C-10), and an axial position of a methyl group at C-8 were elucidated from NOESY correlations between H-2b and H-7a, H-5 and H-6, H-6 and H-10, and H-6 and H₃-12. The conformation of a piperidine ring (C-13-C-17 and N-18) was deduced from NOESY correlations between H-11a and H-17b, and H-15a and H-17b. NOESY cross-peaks of H-4/H-13, H-9a/H-11a, and H-9a/H-17b indicated the relative stereochemistry between a *cis* decahydroquinoline ring (N-1 and C-2-C-10) and a piperidine ring (C-13-C-17 and N-18) through C-11 as shown in Figure 4. Thus, the relative stereochemistry of serratezomine E was elucidated to be **2**.

Serratezomine D (1) is a new lucidine-type alkaloid consisting of a *trans* decahydroquinoline ring and a tetracyclic ring system including a *trans* decahydroquinoline ring and a piperidine ring

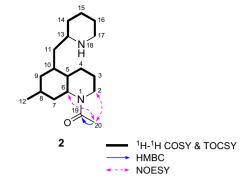
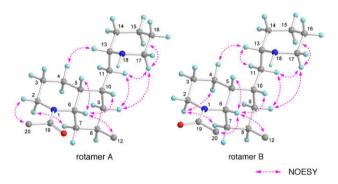



Figure 3. Selected 2D NMR correlations for serratezomine E (2).

Figure 4. Selected NOESY correlations and relative stereochemistry for serratezomine E(2). (Hydrogen atoms of methyl groups were omitted).

fused to a cycloheptane ring, while serratezomine E (**2**) is a new phlegmarane-type alkaloid having a *cis* decahydroquinoline ring and a piperidine ring. Serratezomine D (**1**) exhibited an inhibitory

Table 2 ¹H and ¹³C NMR data of serratezomine E (**2**) in CDCl₃^a

Rotamer A				Rotamer B			
Position	δ_{H}	δ_{C}		Position	δ_{H}	δ_{C}	
2a	3.56 (1H, dd, 13.5, 4.3 Hz)	41.8	t	2a	4.47 (1H, dd, 12.9, 3.7 Hz)	36.4	t
2b	3.31 (1H, dt, 13.5, 3.0 Hz)			2b	2.59 (1H, dt, 13.8, 3.0 Hz)		
3a	1.75 (1H, m)	25.9	t	3a	1.75 (1H, m)	24.9	t
3b	1.38 (1H, m)			3b	1.32 (1H, m)		
4	1.48 (2H, m)	17.1 ^b	t	4	1.47 (2H, m)	16.9 ^b	t
5	1.57 (1H, m)	37.4	d	5	1.70 (1H, m)	39.7	d
5 6	4.85 (1H, dt, 13.8, 4.6 Hz)	46.0	d	6	3.90 (1H, dt, 12.6, 4.6 Hz)	52.0	d
7a	1.93 (1H, m)	27.6	t	7a	2.13 (1H, m)	29.6	t
7b	1.18 (1H, m)			7b	1.18 (1H, m)		
8	2.13 (1H, m)	27.2	d	8	2.13 (1H, m)	27.2	d
9a	1.38 (1H, m)	33.1	t	9a	1.38 (1H, m)	32.5	t
9b	1.10 (1H, m)			9b	1.18 (1H, m)		
10	1.94 (1H, m)	29.6	d	10	1.94 (1H, m)	29.6	d
11a	1.61 (1H, m)	37.6	t	11a	1.61 (1H, m)	37.6	t
11b	1.29 (1H, m)			11b	1.29 (1H, m)		
12	1.09 (3H, d, 7.8 Hz)	18.8 ^c	q	12	1.07 (3H, d, 7.2 Hz)	18.4 ^c	q
13	2.76 (1H, m)	54.0	d	13	2.76 (1H, m)	54.0	d
14a	1.87 (1H, m)	23.0	t	14a	1.87 (1H, m)	23.0	t
14b	1.41 (1H, m)			14b	1.41 (1H, m)		
15a ^d	1.94 (1H, m)	28.4	t	15a ^d	1.83 (1H, m)	30.2	t
15b ^d	1.28 (1H, m)			15b ^d	1.39 (1H, m)		
16a	1.75 (1H, m)	23.4	t	16a	1.75 (1H, m)	23.4	t
16b	1.67 (1H, m)			16b	1.67 (1H, m)		
17a	3.25 (1H, m)	45.3	t	17a	3.25 (1H, m)	45.3	t
17b	2.59 (1H, m)			17b	2.59 (1H, m)		
19		169.0 ^e	S	18		168.8 ^e	S
20	2.04 (3H, s)	22.1 ^f	q	20	2.06 (3H, s)	21.3 ^f	q

 $^{^{\}mathrm{a}}$ $^{\mathrm{1}}\mathrm{H}$ and $^{\mathrm{13}}\mathrm{C}$ NMR spectra were recorded at 600 MHz and 150 MHz, respectively.

b-f Assignments are interchangeable.

activity against acetylcholinesterase (IC₅₀ 0.6 mM), ^{12–14} while lucidines A and B.4,5 and oxolucidines A and B5,6 showed less or no activity.

Acknowledgments

We thank Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of ESIMS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

- 1. Kobayashi, J.; Morita, H. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 2005; p 1.
- Kubota, T.; Yahata, H.; Ishiuchi, K.; Obara, Y.; Nakahata, N.; Kobayashi, J. *Heterocycles* **2007**, *74*, 843. and references cited therein.
- 3. Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 2000, 65, 6241.
- 4. Ayer, W. A.; Browne, L. M.; Nakahara, Y.; Tori, M.; Delbaere, L. T. Can. J. Chem. **1979**, *57*, 1105.

- 5. Inubushi, Y.; Ishii, H.; Harayama, T. Yakugaku Zasshi 1989, 100, 672.
- Tori, M.; Shimoji, T.; Takaoka, S.; Nakashima, K.; Sano, M.; Ayer, A. W. Tetrahedron Lett. **1999**, 40, 323.
- Inubushi, Y.; Tsuda, Y.; Ishii, H.; Sano, T.; Hosokawa, M.; Harayama, T. Yakugaku Zasshi **1964**, 84, 1108.
- Kubota, T.; Sunaura, T.; Morita, H.; Mikami, Y.; Hoshino, T.; Obara, Y.; Nakahata, N.; Kobayashi, J. Heterocycles 2006, 69, 469.
- 9. Ayer, W. A.; Kasitu, G. C. Can. J. Chem. 1989, 67, 1077.
- 10. Serratezomine D (1): colorless amorphous solid; $[\alpha]_D^{23} + 5.4$ (c 0.37, CHCl₃); IR (film) v_{max} 3372, 2927, 1685, 1647, 1457, 1200, and 1129 cm⁻¹; ¹H and ¹³C NMR, see Table 1; ESIMS *m/z* 456 (M+H)⁺; HRESIMS *m/z* 456.3953 (M+H; calcd for C₂₉H₅₀N₃O, 456.3954).
- 11. *Serratezomine E* (**2**): colorless amorphous solid; $[\alpha]_D^{22} + 67.2$ (c 0.06, CHCl₃); IR (film) v_{max} 3385, 2925, 1688, 1623, 1436, 1200, and 1129 cm⁻¹; ¹H and ¹³C NMR data see Table 2; ESIMS *m/z* 293 (M+H)⁺; HRESIMS *m/z* 293.2585 (M+H; calcd for C₁₈H₃₃N₂O, 293.2593).
- 12. Ellman, G. L.; Courtney, K. D.; Anders, V.; Featherstone, R. M. Biochem. Pharmacol. 1961, 7, 88.
- 13. Acetylcholinesterase from electric eel Electrophorus electricus (type V-S, lyophilized powder, Sigma-Aldrich) was used for the assay.
- 14. Galanthamine $^{15-17}$ was used as a standerd inhibitor (IC₅₀, 6.4 μ M).
- 15. Proskurnina, N. F.; Yakovleva, A. P. Zhur. Obschchei. Khim. 1952, 22, 1899.
- 16. Uyeo, S.; Kobayashi, S. Pharm. Bull. 1953, 1, 139.
- 17. Kobayashi, S.; Shingu, T.; Uyeo, S. Chem. Ind. 1956, 177.